Issues of measurement depth and tillage on soil C monitoring Denis Angers

Tillage and N₂O emissions Philippe Rochette

Agriculture and Agri-Food Canada Québec

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Measurement depth, tillage and soil C monitoring

Effects of tillage vary with soil depth...

Questions

 Depth of sampling
Number and thickness of depth increments

Edwards et al. 1988 (Ohio)

Tillage practices vary...

Example, in Canada: **Prairies: Heavy-Duty Cultivator** - <10 cm, no inversion, high speed - semi-arid climate East: Moldboard plow - inversion

- approx. 20 cm (variable), low speed

- moist/humid climate

Depth of residue incorporation varies...

Corn-derived C distribution (using ¹³C)

- Average of seven sites from Eastern Canada (Angers et al. 1997)

Example from Eastern Canada

Poirier et al. 2009; SSSAJ

Minnesota, 14 yr continuous corn, Mg C ha⁻¹ cm⁻¹

Depth	NT	MP
0-7.5	4.49*	3.89
7.5-15	4.94	4.66
15-30	3.51	3.17
30-45	2.45*	1.48

Huggins et al., 2007

Effects are highly variable and not always easy to explain...

-> Meta-analyses

Meta-analysis

- Only included studies with
 - Inversion tillage vs no-tillage comparisons
 - Replicated, randomized
 - Sampled soils at ≥ 30 cm depth
- 28 studies (67% N. Am., 11% Europe, 11% S. Am.)
- 68 comparisons
 - either different sites or crop rotations
- 320 data points

Change in SOC under NT relative to Inversion Tillage

Angers and Eriksen-Hamel, 2008; SSSAJ

Change in SOM under reduced tillage relative to plowing

Sites from Europe

(de Tourdonnet et al. 2008)

Long-term tillage sites (11 to 30 years)

CT is cultivator

Historically sampled at surface (0-15 cm)

Average of 6 long-term sites in Western Canada (11 to 30 years)

VandenBygaart et al., submitted SSSAJ

Thickness of tilled layer can be highly variable...

Chan et al., 2009 CJSS

Considerations for monitoring

- Depth increments to capture expected changes (very surface, bottom plow layer).

- Wise to sample one layer (10-15 cm) deeper than assumed tillage depth

- maybe 30-40 cm... with 3 depth increments, especially if monitoring NT

e.g.: if monitoring MP (at 20 cm) and NT

0-5 cm 5-20 cm 20-30 cm

SOC accumulation under NT

Remaining of plow layer (SOC may be lower under NT)

To capture changes below plow layer or its variability

Tillage and N₂O emissions

Question

Does response of N₂O emission to NT vary with soil and climatic conditions?

Site-specific study in Eastern Canada

Average of three years

Canada's National Ag. GHG Inventory

Contribution of tillage to N2O emissions is estimated using a coefficient (modifier) = N2O fluxes: NT / CT

> Prairie region = 0.8 Eastern Canada = 1.1

> > Rochette et al., 2008; CJSS

So...

- Need to consider differential effect of tillage on N₂O emissions

- Interaction soil x climate

- Difficult to separate these two effects

Thanks!

denis.angers@agr.gc.ca

philippe.rochette@agr.gc.ca

Measurement of soil C gain

Meta-analysis of world soils

West and Post (2002)

Cases where effects of NT may be overestimated if only sample at surface... Cases where effects of NT may be underestimated if only sample at surface...