Technical Working Group on Agricultural Greenhouse Gases (T-AGG): Experts Meeting, April 22 & 23, 2010 · Chicago, Illinois

Soil carbon management in developing country agricultural systems

Theodor Friedrich Senior Officer AGP

Food and Agriculture Organization of the United Nations

and the second s

- Agriculture as driver
- Global potentials
- Mitigation strategies
- Mitigation potential
- Conclusions

Greenhouse gas emissions:

- Carbon Dioxide is the most important GHG
- Other GHG (Methane, Nitrous Oxide) more powerful
- Still 77% of total GHG in CO₂ equivalent is due to CO₂
- Agricultural land use contributes 32% of all GHG:
- The major largest components are:
 - Land use change: 18.3%
 - Nitrogen emissions from soils: 6%
 - Methane from livestock: 5%

Agriculture mitigating climate change

- Globally 5 bill ha (5·10⁹) under agriculture i.e. managed by mankind (= 40% of total land)
 of this 1.4 bill ha are cropland
- Significant impact on climate change

Agriculture mitigating climate change

- Global pool of Soil Organic Carbon 1,500 Pg (1 Pg = 1 bill. metric tons = 1 Gt)
- Agriculture has released 456 Pg C from SOC which builds the potential for soil as C-sink
- Potential C-capturing from cropland: 0.75 – 1.0 bill t (Pg)/year
- Total potential for increasing the terrestrial C pool is about 3 Pg/year = about the annual increase in global CO₂ concentration
- Additionally emission reductions possible

Agricultural (crop) mitigation strategies: Sequestration: Maximize soil as carbon sink reduce soil carbon emissions maximise biomass production enhance soil carbon input Emission reduction: Rice – methane Fertilizer – nitrous oxide

- Fuel emissions
- Emissions from input manufacturing
- Manure handling
- Bio energy?

Sequestration: Carbon Offset Consultation, West Lafayette, October 2008:

- CA base for carbon credit protocols
- CA for CC mitigation and adaptation
- CA technologies for Climate Change adaptation and mitigation available

mitigation strategies

The simultaneous combination of

- Continuous zero tillage
- Permanent soil cover
- Crop rotations

has become known as Conservation Agriculture

mitigation strategies

Conservation Agriculture

Cumulative Carbon Dioxide Loss after 24 hours

Reicosky

mitigation strategies

mitigation strategies

TILLAGE-INDUCED CO2 "FLUSH" AND CURRENT CROP RESIDUE 19 days after tillage

Reicosky

Nature's Interdependent Tri-Cycles:

Water, Carbon, Nitrogen,

Tillage disrupts the natural cycles!

CA and climate change:

- No single practice safely qualifies for carbon credits (no-till, compost, organic)
- No-till a necessary, not sufficient condition for Carbon Sequestration in most climates
- Protocols for optimized systems to be established
- Attention to lifecycles and other GHG (compaction, irrigation)

Emission reductions: Rice (CH₄)

- CA-rice: no-till/no puddling
- residue retention
- no permanent flooding
- evtl. permanent beds
- SRI agronomy for better root development

Emission reductions: N-Fertilizer

- Use of legumes in rotation
- Careful use of N fertilizer
- Placement of N fertilizer (urea)
- Irrigation (no flooding)
- Compaction: CTF

Emission reductions:

- Fuel emissions: 40 to 70%
- Emissions from input manufacturing: biological processes replacing functions of
 - machinery: 50%
 - fertilizer: 30-50%
 - pesticides: 20%
- Manure handling:
 - biogas
 - aerobic composting
 - application into cover crops/crop residues
 - knifing into soil (small quantities)
- No burning avoidance of fire

Bio energy:

- Bio energy = low efficiency solar energy
- Carbon: either for bio energy or for carbon sequestration
- Carbon in soils has other beneficial effects beyond carbon sequestration
- Diversion of carbon towards bio energy reduces the speed of soil carbon build up Biochar:
- residues are a better C-source for soils

Further options:Integrated Crop-livestock-systems

12 years: soybean & italian ryegrass in succession

• Agroforestry: CA with trees (CAWT)

Sequestration:

Some soil carbon sequestration rates

	Region		Rate
			Mg ha ⁻¹ yr ⁻¹
lite	Tropical (West-Central BR)	Range Mean	0.04 - 0.63 0.39
Brazin	Subtropical (Southern BR)	Range Mean	0.04-0.97 0.58
	Temperate (USA)	Range	0.1-0.5
in finetin	GLOBAL	Mean	0.54

Tropical: Corazza et al. (1999), Silva et al. (2001), Leite et al. (2001) Subtropical: Bayer et al. (2000a,b), Lovato (2001), Amado et al. (2001), Freixo et al. (2002) Temperate: Lal et al. (1999); West & Marland (2002) Global: West & Post (2002)

Slide taken from Amado 2008, CACOC/CTIC-FAO

Sequestration:

- Intensive grassland: 2-7 Mg·ha⁻¹·a⁻¹
- New saturation:
 - cropland 30-50 years
 - grassland 15-20 years
- Actual growth in CA: 6 mill ha/a, increasing
- outlook: in 20 years global CA adoption rate at 50%?

Conclusions:

- Agricultural land management: big player in climate change
- Agriculture is not an option: need to reduce environmental footprint
- CA responds to many global problems and is expanding globally
- Agriculture with CA could become a major element for global environmental policies
- CA is more profitable payments not required to sustain it, but to accelerate adoption
- "Carbon" as new produce from farming
- BUT: no quick fix; complementary measures needed optimized protocols

Sustainability and Food for all: With CA agriculture can become part of the solution!

Thank you for your attention! More information: