

National Laboratory for Agriculture and the Environment

Potential of Biochar for Carbon Sequestration in the US

David A. Laird USDA, ARS, National Laboratory for Agriculture and the Environment

Pyrolysis

Corn stover (~1.5 GJ m⁻³) Syngas (~6 MJ kg⁻¹) Bio-oil (~22 GJ m⁻³)

Biochar (~21 MJ kg⁻¹)

Traditional steel kilns for Slow Pyrolysis

Modern fast pyrolyzers are optimized for production of bio-oil.

Dynamotive Energy Systems Co. 200 tpd Fast pyrolyzer in West Loren Onterio, Canada.

The Biochar Revolution

Glaser et al. 2001. Naturwissenschaften (2001) 88:37-41

Biochar Contributes about 5-50% of the Carbon in Soils

Photo by James S. and Susan W. Aber http://www.geospectra.net/kite/ross/fire.htm Biochar amendments sequester C in soils for millennia

Preliminary reports suggest that biochar additions may reduce N₂O emissions from agricultural soils.

The impact of biochar additions on crop yields for high-quality soils in temperate regions is likely to be small.

> First year trials in Iowa showed a 15% increase plant populations,

and a 4% increase in corn grain yield from biochar applications.*

Impact of a Pyrolysis-Biochar Platform on GHG Emissions?

Increased CO₂ Competition emissions due between food and to enhanced soil biomass crops microbial may increase land under cultivation. respiration + 0 **Increase** C **Reduce CO**₂ **Increase** C Increased Reduce CO₂ **Reduce N₂O** emissions input to soil yields may sequestration emissions due emissions decrease the in soils due to due to bio-oil from soils to decreased enhanced (Biochar C is amount of displacing use of lime and due to better land needed to fossil fuel very stable) plant growth fertilizer soil aeration grow food.

Laird et al., 2009.

Vision for integrated food and biomass production systems

The Charcoal Vision

If the U.S. were to pyrolyze 1.3 billion tons of biomass each year, we could permanently sequester 139 Tg of C in soil and displace 1.9 billion barrels of imported oil with domestically produced bio-oil. The total C credit would be 363 Tg of C or about 10% of U.S. annual CO_2 -C emissions and the bio-oil production would equal about 25% of annual U.S. oil consumption.

