

Pasture Management for Carbon and Livestock Methane and Nitrous Oxide

Daniel L. Martino daniel.martino@carbosur.com.uy

Chicago - 23 April 2010

Technical Working Group on Agricultural Greenhouse Gases (T-AGG) Expert Meeting Session on International Agricultural Mitigation Opportunities

Livestock Production and GHG Emissions

In spite of relatively similar levels of production of meat and milk, GHG emissions from livestock are much higher in developing than in developed regions

•Enteric: 150% higher

- •N₂O PRP: 90% higher
- •Manure: 10% lower
- •LULUCF emissions and biomass burning were not considered. These are most significant in developing regions

Two different, complementary strategies

- Already efficient systems (mostly in developed regions)
 - Limited options for mitigation based on reducing animal population
 - Focus on research (e.g., New Zealand's PGgRc) aiming at reducing emissions per animal (and per unit product).
 - Need to consider land use emissions associated with production of feed.
- Less efficient systems (mostly in developing regions)
 - Intensification of pastoral systems provides the best opportunities (large area of grassland). Adoption of mixed crop/livestock systems in cropland would also be effective.
 - Rapid implementation is possible, synergies with adaptation, food security and SD.
 - Focus on integral approach (AFOLU) including consideration of avoidance of deforestation, C sequestration in soils and N₂O to reduce emissions per unit product

PGgRc Research Programme (NZ)

©2008 PGGRC 2008 - All rights reserved

Productivity and GHG Emissions per unit product (milk)

Beef cattle: Emissions per unit product

System	GHG emissions (kg CO ₂ -eq/kg CW)
High-quality pasture (NZ)	12-18
Grain-fed, Medium-quality pasture	20-40
Poor quality pasture (tropical)	40-100
Tropical pasture + recent deforestation	>>100
Global average	>40?

Substitution of high carbon intensity systems (extensive grazing of grassland, particularly on recently deforested land) by more productive systems would enable large emission reductions.

Adoption of mixed livestock-crop systems (e.g., crop and pasture rotations) may also be very effective in reducing emissions

Opportunities for reducing emissions through pasture improvement and/or adoption of mixed systems

- Meat (and, to a lesser extent, dairy) production is based on low-quality pastures in large areas.
- Adoption of pasture improvement on those areas would bring about:
 - Reduced methane CH₄ and PRP soil N₂O emissions per unit product (somewhat offset by small increases in N₂O from soils if legumes followed by soil tillage or N fertilizers are used).
 - Increased CO₂ removals (sequestration in soils)
 - Reduced emissions from deforestation (where it is driven by expansion of grazing areas).
- Associated benefits
 - Improved land productivity and resilience, soil conservation
 - Optimization of land use, risk management through diversification
 - Reduced emissions from deforestation (where it is driven by expansion of grazing areas or by procurement of timber) and reduced pressure on land.

Productivity and CH₄ Emissions from Enteric Fermentation

